New targets for drug design: Importance of nsp14/nsp10 complex formation for the 3’-5’ exoribonucleolytic activity on SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has triggered a global pandemic with devastating consequences for health-care and social-economic systems. Thus, the understanding of fundamental aspects of SARS-CoV-2 is of extreme importance.

In this work, we have focused our attention on the viral ribonuclease (RNase) nsp14, since this protein was considered one of the most interferon antagonists from SARS-CoV-2, and affects viral replication. This RNase is a multifunctional protein that harbors two distinct activities, an N-terminal 3’-to-5’ exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), both with critical roles in coronaviruses life cycle. Namely, SARS-CoV-2 nsp14 ExoN knockout mutants are non-viable, indicating nsp14 as a prominent target for the development of antiviral drugs.

Nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein, which has a pleiotropic function during viral replication. In this study, we have performed the first biochemical characterization of the complex nsp14-nsp10 from SARS-CoV-2. Here we confirm the 3’-5’ exoribonuclease and MTase activities of nsp14 in this new Coronavirus, and the critical role of nsp10 in upregulating the nsp14 ExoN activity in vitro . Furthermore, we demonstrate that SARS-CoV-2 nsp14 N7-MTase activity is functionally independent of the ExoN activity. The nsp14 MTase activity also seems to be independent of the presence of nsp10 cofactor, contrarily to nsp14 ExoN.

Until now, there is no available structure for the SARS-CoV-2 nsp14-nsp10 complex. As such, we have modelled the SARS-CoV-2 nsp14-nsp10 complex based on the 3D structure of the complex from SARS-CoV (PDB ID 5C8S). We also have managed to map key nsp10 residues involved in its interaction with nsp14, all of which are also shown to be essential for stimulation of the nsp14 ExoN activity. This reinforces the idea that a stable interaction between nsp10 and nsp14 is strictly required for the nsp14-mediated ExoN activity of SARS-CoV-2, as observed for SARS-CoV.

We have studied the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function contrasting to the functionality of these conserved catalytic residues in SARS-CoV, and in the Middle East respiratory syndrome coronavírus (MERS). The differences here revealed can have important implications regarding the specific pathogenesis of SARS-CoV-2.

The nsp10-nsp14 interface is a recognized attractive target for antivirals against SARS-CoV-2 and other coronaviruses. This work has unravelled a basis for discovering inhibitors targeting the specific amino acids here reported, in order to disrupt the assembly of this complex and interfere with coronaviruses replication.

Article activity feed

  1. SciScore for 10.1101/2021.01.07.425745: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The samples collected were analysed in a 15% SDS-PAGE gel followed by BlueSafe staining (NZYTech, Portugal).
    NZYTech
    suggested: (NZYTech, RRID:SCR_016772)
    Protein modelling: Modeling of the SARS-CoV-2 nsp10/nsp14 complex was done with the program Modeller version 9.23 [22].
    Modeller
    suggested: (MODELLER, RRID:SCR_008395)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.