Inherent random fluctuations in COVID-19 outbreaks may explain rapid growth of new mutated virus variants
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
A new virus variant of SARS-COV-2 has had a profound impact on society while governments have taken action to limit its impacts by enforcing lockdowns and limiting spread from the UK to other countries. Variants with mutations in the virus genome are likely to occur, but do not always associate to significant changes in the biology of the virus, or the disease. For the variant VOC 202012/01 (also referred to as B.1.1.7), however, preliminary reports indicate it may be more transmissible. Here we use a simulation model calibrated to the inherent random fluctuating transmission pattern of COVID-19 to investigate what the probability may be for detecting more transmissible virus variants post facto. We find that post facto identification of successful virus variants of SARS-COV-2 are likely to exhibit growth rates that are substantially larger than the average growth rate. This finding has implications for interpreting growth rate and transmissibility of new virus variants.
Article activity feed
-
SciScore for 10.1101/2021.01.07.21249353: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2021.01.07.21249353: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-