Design of Specific Primer Set for Detection of B.1.1.7 SARS-CoV-2 Variant using Deep Learning

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The SARS-CoV-2 variant B.1.1.7 lineage, also known as clade GR from Global Initiative on Sharing All Influenza Data (GISAID), Nextstrain clade 20B, or Variant Under Investigation in December 2020 (VUI – 202012/01), appears to have an increased transmissability in comparison to other variants. Thus, to contain and study this variant of the SARS-CoV-2 virus, it is necessary to develop a specific molecular test to uniquely identify it. Using a completely automated pipeline involving deep learning techniques, we designed a primer set which is specific to SARS-CoV-2 variant B.1.1.7 with >99% accuracy, starting from 8,923 sequences from GISAID. The resulting primer set is in the region of the synonymous mutation C16176T in the ORF1ab gene, using the canonical sequence of the variant B.1.1.7 as a reference. Further in-silico testing shows that the primer set’s sequences do not appear in different viruses, using 20,571 virus samples from the National Center for Biotechnology Information (NCBI), nor in other coronaviruses, using 487 samples from National Genomics Data Center (NGDC). In conclusion, the presented primer set can be exploited as part of a multiplexed approach in the initial diagnosis of Covid-19 patients, or used as a second step of diagnosis in cases already positive to Covid-19, to identify individuals carrying the B.1.1.7 variant.

Article activity feed

  1. SciScore for 10.1101/2020.12.29.424715: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.