LazySampling and LinearSampling: Fast Stochastic Sampling of RNA Secondary Structure with Applications to SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Many RNAs fold into multiple structures at equilibrium. The classical stochastic sampling algorithm can sample secondary structures according to their probabilities in the Boltzmann ensemble, and is widely used. However, this algorithm, consisting of a bottom-up partition function phase followed by a top-down sampling phase, suffers from three limitations: (a) the formulation and implementation of the sampling phase are unnecessarily complicated; (b) the sampling phase repeatedly recalculates many redundant recursions already done during the partition function phase; (c) the partition function runtime scales cubically with the sequence length. These issues prevent stochastic sampling from being used for very long RNAs such as the full genomes of SARS-CoV-2. To address these problems, we first adopt a hypergraph framework under which the sampling algorithm can be greatly simplified. We then present three sampling algorithms under this framework, among which the LazySampling algorithm is the fastest by eliminating redundant work in the sampling phase via on-demand caching. Based on LazySampling, we further replace the cubic-time partition function by a linear-time approximate one, and derive LinearSampling, an end-to-end linear-time sampling algorithm that is orders of magnitude faster than the standard one. For instance, LinearSampling is 176× faster (38.9s vs. 1.9h) than Vienna RNAsubopt on the full genome of Ebola virus (18,959 nt ). More importantly, LinearSampling is the first RNA structure sampling algorithm to scale up to the full-genome of SARS-CoV-2 without local window constraints, taking only 69.2 seconds on its reference sequence (29,903 nt ). The resulting sample correlates well with the experimentally-guided structures. On the SARS-CoV-2 genome, LinearSampling finds 23 regions of 15 nt with high accessibilities, which are potential targets for COVID-19 diagnostics and drug design.

See code: https://github.com/LinearFold/LinearSampling

Article activity feed

  1. SciScore for 10.1101/2020.12.29.424617: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.