Efficiency of Artificial Intelligence in Detecting COVID-19 Pneumonia and Other Pneumonia Causes by Quantum Fourier Transform Method

This article has been Reviewed by the following groups

Read the full article

Abstract

The new coronavirus (COVID-19) appeared in Wuhan in December 2019 and has been announced as a pandemic by the World Health Organization (WHO). Currently, this deadly pandemic has caused more than 1 million deaths worldwide. Therefore, it is essential to detect positive cases as early as possible to prevent the further spread of this outbreak. Currently, the most widely used COVID-19 detection technique is a real-time reverse transcription-polymerase chain reaction (RT-PCR). However, RT-PCR is time-consuming to confirm infection in the patient. Because RT-PCR is less sensitive, it provides high false-negative results. Computed tomography (CT) is recommended as a solution to this problem by healthcare professionals because of its higher sensitivity for early and rapid diagnosis. In addition, radiation used in CT poses a serious threat to patients. In this study, we propose a CNN-based method to distinguish COVID-19 pneumonia from other types of viral and bacterial pneumonia using low-dose CT images to reduce the radiation dose used in CT. In our study, we used a data set consisting of 7717 CT images of 350 patients that we collected from Çanakkale Onsekiz Mart University Research Hospital. We used a CNN-based network that suppresses noise to remove interference from low-dose CT images. In the image preprocessing phase, we provided lung segmentation from CT images and applied quantum Fourier transform. By evaluating all possible variations of local knowledge at the same time with quantum Fourier transformation, the most informative spatial information was extracted. In CNN-based architecture, we used pre-trained ResNet50v2 as a feature extractor and fine-tune by training with our dataset. We visualized the efficiency of the ResNet50v2 network using the t-SNE method. We performed the classification process with a fully connected layer. We created a heat map using the GradCam technique to see where the model focuses on the images while classifying. In this experimental study, the results of 99.5%, 99.2%, 99.0%, 99.7%, and 99.1%, were obtained in the context of performance criteria such as accuracy, precision, sensitivity, specificity, and f1 score, respectively. This study revealed the artificial intelligence-based computer-aided diagnosis (CAD)system as an effective and fast method to accurately diagnose COVID-19 pneumonia.

Article activity feed

  1. SciScore for 10.1101/2020.12.29.20248900: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.