Differential Dynamic Behavior of Prefusion Spike Proteins of SARS Coronaviruses 1 and 2

This article has been Reviewed by the following groups

Read the full article

Abstract

The coronavirus spike protein, which binds to the same human receptor in both SARS-CoV-1 and 2, has been implied to be a potential source of their differential transmissibility. However, the mechanistic details of spike protein binding to its human receptor remain elusive at the molecular level. Here, we have used an extensive set of unbiased and biased microsecond-level all-atom molecular dynamics (MD) simulations of SARS-CoV-1 and 2 spike proteins to determine the differential dynamic behavior of prefusion spike protein structure in the two viruses. Our results indicate that the active form of the SARS-CoV-2 spike protein is more stable than that of SARS-CoV-1 and the energy barrier associated with the activation is higher in SARS-CoV-2. Our results also suggest that not only the receptor binding domain (RBD) but also other domains such as the N-terminal domain (NTD) could play a role in the differential binding behavior of SARS-CoV-1 and 2 spike proteins.

Article activity feed

  1. SciScore for 10.1101/2020.12.25.424008: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    All simulations were performed using the NAMD 2.13 59 simulation package with the CHARMM36 all-atom additive force field 60.
    NAMD
    suggested: (NAMD, RRID:SCR_014894)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

  2. SciScore for 10.1101/2020.12.25.424008: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    All simulations were performed using the NAMD 2.13 59 simulation package with the CHARMM36 all-atom additive force field 60 .
    NAMD
    suggested: (NAMD, RRID:SCR_014894)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.


    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.