Positive correlation between long term emission of several air pollutants and COVID-19 deaths in Sweden

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Several recent studies have found troubling links between air pollution and both incidence and mortality of COVID-19, the pandemic disease caused by the virus SARS-CoV-2. Here, we investigate whether such a link can be found also in Sweden, a country with low population density and a relatively good air quality in general, with low background levels of important pollutants such as PM2.5 and NO 2 . The investigation is carried out by relating normalized emission levels of several air pollutants to normalized COVID-19 deaths at the municipality level, after applying a sieve function using an empirically determined threshold value to filter out noise. We find a fairly strong correlation for PM2.5, PM10 and SO 2 , and a moderate one for NO x . We find no correlation neither for CO, nor (as expected) for CO 2 . Our results are statistically significant and the calculations are simple and easily verifiable. Since the study considers only emission levels of air pollutants and not measurements of air quality, climatic and meteorological factors (such as average wind speeds) can trivially be ruled out as confounders. Finally, we also show that although there are small positive correlations between population density and COVID-19 deaths in the studied municipalities (which are for the most part rural and non densely populated) they are either weak or not statistically significant.

Article activity feed

  1. SciScore for 10.1101/2020.12.05.20244418: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.