Synthetic Data Generation for Improved covid-19 Epidemic Forecasting

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

During an epidemic, accurate long term forecasts are crucial for decision-makers to adopt appropriate policies and to prevent medical resources from being overwhelmed. This came to the forefront during the covid-19 pandemic, during which there were numerous efforts to predict the number of new infections. Various classes of models were employed for forecasting including compartmental models and curve-fitting approaches. Curve fitting models often have accurate short term forecasts. Their parameters, however, can be difficult to associate with actual disease dynamics. Compartmental models take these dynamics into account, allowing for more flexible and interpretable models that facilitate qualitative comparison of scenarios. This paper proposes a method of strengthening the forecasts from compartmental models by using short term predictions from a curve fitting approach as synthetic data. We discuss the method of fitting this hybrid model in a generalized manner without reliance on region specific data, making this approach easy to adapt. The model is compared to a standard approach; differences in performance are analyzed for a diverse set of covid-19 case counts.

Article activity feed

  1. SciScore for 10.1101/2020.12.04.20243956: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.