Role of Long-range Allosteric Communication in Determining the Stability and Disassembly of SARS-COV-2 in Complex with ACE2

This article has been Reviewed by the following groups

Read the full article

Abstract

Severe acute respiratory syndrome (SARS) and novel coronavirus disease (COVID-19) are caused by two closely related beta-coronaviruses, SARS-CoV and SARS-CoV-2, respectively. The envelopes surrounding these viruses are decorated with spike proteins, whose receptor binding domains (RBDs) initiate invasion by binding to the human angiotensin-converting enzyme 2 (ACE2). Subtle changes at the interface with ACE2 seem to be responsible for the enhanced affinity for the receptor of the SARS-CoV-2 RBD compared to SARS-CoV RBD. Here, we use Elastic Network Models (ENMs) to study the response of the viral RBDs and ACE2 upon dissassembly of the complexes. We identify a dominant detachment mode, in which the RBD rotates away from the surface of ACE2, while the receptor undergoes a conformational transition which stretches the active-site cleft. Using the Structural Perturbation Method, we determine the network of residues, referred to as the Allostery Wiring Diagram (AWD), which drives the large-scale motion activated by the detachment of the complex. The AWD for SARS-CoV and SARS-CoV-2 are remarkably similar, showing a network that spans the interface of the complex and reaches the active site of ACE2, thus establishing an allosteric connection between RBD binding and receptor catalytic function. Informed in part by the AWD, we used Molecular Dynamics simulations to probe the effect of interfacial mutations in which SARS-CoV-2 residues are replaced by their SARS-CoV counterparts. We focused on a conserved glycine (G502 in SARS-CoV-2, G488 in SARS-CoV) because it belongs to a region that initiates the dissociation of the complex along the dominant detachment mode, and is prominent in the AWD. Molecular Dynamics simulations of SARS-CoV-2 wild-type and G502P mutant show that the affinity for the human receptor of the mutant is drastically diminished. Our results suggest that in addition to residues that are in direct contact with the interface those involved in long range allosteric communication are also a determinant of the stability of the RBD-ACE2 complex.

Article activity feed

  1. SciScore for 10.1101/2020.11.30.405340: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The VMD 44 package Mutator was used to setup the alchemical substitutions for computing the ΔG of mutation.
    Mutator
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.