A Retrospective Longitudinal Study of COVID-19 as Seen by a Large Urban Hospital in Chicago

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The rapid spread of the novel coronavirus disease 2019 (COVID-19) has created high demand for medical resources, including personnel, intensive care unit beds, and ventilators. As thousands of patients are hospitalized, the disease has shown remarkable diversity in its manifestation; many patients with mild to no symptoms recover from the disease requiring minimal care, but some patients with severe disease progression require mechanical ventilation support in intensive care units (ICU) with an increased risk of death. Studying the characteristics of patients in these various strata can help us understand the varied progression of this disease, enable earlier interventions for at-risk patients, and help manage medical resources more efficiently. This paper presents a retrospective analysis of 10,123 COVID-19 patients treated at the Rush University Medical Center in Chicago, including their demographics, symptoms, comorbidities, laboratory values, vital signs, and clinical history. Specifically, we present a staging scheme based on discrete clinical events (i.e., admission to the hospital, admission to the ICU, mechanical ventilation, and death), and investigate the temporal trend of clinical variables and the effect of comorbidities in each of those stages. We then developed a prognostic model to predict ventilation demands at an individual patient level by analyzing baseline clinical variables, which entails (1) a least absolute shrinkage and selection operator (LASSO) regression and a decision tree model to identify predictors for mechanical ventilation; and (2) a logistic regression model based on these risk factors to predict which patients will eventually need ventilatory support. Our results indicate that the prognostic model achieves an AUC of 0.823 (95% CI: 0.765–0.880) in identifying patients who will eventually require mechanical ventilation.

Article activity feed

  1. SciScore for 10.1101/2020.11.29.20240606: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Our study is subject to several limitations. It is a single-center study, and practice patterns in that center may not generalize to other centers. In addition, we did not include radiography in the predictive model. Future studies will continue refining the model and validate its performance prospectively.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.