Coronavirus (COVID-19) Outbreak Prediction Using Epidemiological Models of Richards Gompertz Logistic Ratkowsky and SIRD

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

On 30 July 2020, a total number of 301,530 diagnosed COVID-19 cases were reported in Iran, with 261,200 recovered and 16,569 dead. The COVID-19 pandemic started with 2 patients in Qom city in Iran on 20 February 2020. Accurate prediction of the end of the COVID-19 pandemic and the total number of populations affected is challenging. In this study, several widely used models, including Richards, Gompertz, Logistic, Ratkowsky, and SIRD models, are used to project dynamics of the COVID-19 pandemic in the future of Iran by fitting the present and the past clinical data. Iran is the only country facing a second wave of COVID-19 infections, which makes its data difficult to analyze. The present study’s main contribution is to forecast the near-future of COVID-19 trends to allow non-pharmacological interventions (NPI) by public health authorities and/or government policymakers. We have divided the COVID-19 pandemic in Iran into two waves, Wave I, from February 20, 2020 to May 4, 2020, and Wave II from May 5, 2020, to the present. Two statistical methods, i.e., Pearson correlation coefficient (R) and the coefficient of determination (R2), are used to assess the accuracy of studied models. Results for Wave I Logistic, Ratkowsky, and SIRD models have correctly fitted COVID-19 data in Iran. SIRD model has fitted the first peak of infection very closely on April 6, 2020, with 34,447 cases (The actual peak day was April 7, 2020, with 30,387 active infected patients) with the re-production number R0=3.95. Results of Wave II indicate that the SIRD model has precisely fitted with the second peak of infection, which was on June 20, 2020, with 19,088 active infected cases compared with the actual peak day on June 21, 2020, with 17,644 cases. In Wave II, the re-production number R0=1.45 is reduced, indicating a lower transmission rate. We aimed to provide even a rough project future trends of COVID-19 in Iran for NPI decisions. Between 180,000 to 250,000 infected cases and a death toll of between 6,000 to 65,000 cases are expected in Wave II of COVID-19 in Iran. There is currently no analytical method to project more waves of COVID-19 beyond Wave II.

Article activity feed

  1. SciScore for 10.1101/2020.11.29.20240580: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Routine 1: MATLAB routine to optimize model parameters against COVID-19 data.
    MATLAB
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.