Predicting COVID-19 (Coronavirus Disease) Outbreak Dynamics Using SIR-based Models: Comparative Analysis of SIRD and Weibull-SIRD

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The SIR type models are built by a set of ordinary differential equations (ODE), which are strongly initial value dependant. To fit multiple biological data with SIR type equations requires fitting coefficients of these equations by an initial guess and applying optimization methods. These coefficients are also extremely initial value-dependent. In the vast publication of these types, we hardly see, among simple to highly complicated SIR type methods, that these methods presented more than a maximum of two biological data sets. We propose a novel method that integrates an analytical solution of the infectious population using Weibull distribution function into any SIR type models. The Weibull-SIRD method has easily fitted 4 set of COVID-19 biological data simultaneously. It is demonstrated that the Weibull-SIRD method predictions for susceptible, infected, recovered, and deceased populations from COVID-19 in Kuwait and UAE are superior compared with SIRD original ODE model. The proposed method here opens doors for new deeper studying of biological dynamic systems with realistic biological data trends than providing some complicated, cumbersome mathematical methods with little insight into biological data’s real physics.

Article activity feed

  1. SciScore for 10.1101/2020.11.29.20240564: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    MATLAB algorithm (lsqcurvefit) was applied to find best coefficients in SIRD model equations (1) to (5).
    MATLAB
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.