Trends of COVID-19 (Coronavirus Disease) in GCC Countries using SEIR-PAD Dynamic Model
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Extension of SIR type models has been reported in a number of publications in mathematics community. But little is done on validation of these models to fit adequately with multiple clinical data of an infectious disease. In this paper, we introduce SEIR-PAD model to assess susceptible, exposed, infected, recovered, super-spreader, asymptomatic infected, and deceased populations. SEIR-PAD model consists of 7-set of ordinary differential equations with 8 unknown coefficients which are solved numerically in MATLAB using an optimization algorithm. Four set of COVID-19 clinical data consist of cumulative populations of infected, deceased, recovered, and susceptible are used from start of the outbreak until 23 rd June 2020 to fit with SEIR-PAD model results. Results for trends of COVID-19 in GCC countries indicate that the disease may be terminated after 200 to 300 days from start of the outbreak depends on current measures and policies. SEIR-PAD model provides a robust and strong tool to predict trends of COVID-19 for better management and/or foreseeing effects of certain enforcing laws by governments, health organizations or policy makers.
Article activity feed
-
SciScore for 10.1101/2020.11.29.20240515: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources SEIR-PAD model has 8 unknown transmission coefficients x=[x1 x2 …x8] that can be obtained by an optimization algorithm in MATLAB by fitting available clinical data. MATLABsuggested: (MATLAB, RRID:SCR_001622)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical …
SciScore for 10.1101/2020.11.29.20240515: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources SEIR-PAD model has 8 unknown transmission coefficients x=[x1 x2 …x8] that can be obtained by an optimization algorithm in MATLAB by fitting available clinical data. MATLABsuggested: (MATLAB, RRID:SCR_001622)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-