A comparison of DNA/RNA extraction protocols for high-throughput sequencing of microbial communities

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, we compare the relative performance of two total nucleic acid extraction protocols and our previously benchmarked protocol. We included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here we present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection, and well-to-well contamination, between these protocols.

Accession numbers

Raw sequence data were deposited at the European Nucleotide Archive (accession#: ERP124610) and raw and processed data are available at Qiita (Study ID: 12201). All processing and analysis code is available on GitHub ( github.com/justinshaffer/Extraction_test_MagMAX ).

Methods summary

To allow for downstream applications involving RNA-based organisms such as SARS-CoV-2, we compared the two extraction protocols designed to extract DNA and RNA against our previously established protocol for extracting only DNA for microbial community analyses. Across 10 diverse sample types, one of the two protocols was equivalent or better than our established DNA-based protocol. Our conclusion is based on per-sample comparisons of DNA and RNA yield, the number of quality sequences generated, microbial community alpha- and beta-diversity and taxonomic composition, the limit of detection, and extent of well-to-well contamination.

Article activity feed

  1. SciScore for 10.1101/2020.11.13.370387: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variableHuman urine samples included samples from female and male individuals.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    For shallow shotgun metagenomics data, raw sequence files were demultiplexed using BaseSpace (Illumina, La Jolla, CA), quality-filtered using Atropos [34] and human read depleted by alignment to human reference genome GRCh38 using bowtie2 [35].
    BaseSpace
    suggested: (BaseSpace, RRID:SCR_011881)
    bowtie2
    suggested: (Bowtie 2, RRID:SCR_016368)

    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.