A retrospective cluster analysis of COVID-19 cases by county

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic in the U.S. has exhibited distinct waves, the first beginning in March 2020, the second beginning in early June, and additional waves currently emerging. Paradoxically, almost no county has exhibited this multi-wave pattern. We aim to answer three research questions: (1) How many distinct clusters of counties exhibit similar COVID-19 patterns in the time-series of daily confirmed cases?; (2) What is the geographic distribution of the counties within each cluster? and (3) Are county-level demographic, socioeconomic and political variables associated with the COVID-19 case patterns? We analyzed data from counties in the U.S. from March 1 to October 24, 2020. Time series clustering identified clusters in the daily confirmed cases of COVID-19. An explanatory model was used to identify demographic, socioeconomic and political variables associated the cluster patterns. Four patterns were identified from the timing of the outbreaks including counties experiencing a spring, an early summer, a late summer, and a fall outbreak. Several county-level demographic, socioeconomic, and political variables showed significant associations with the identified clusters. The timing of the outbreak is related both to the geographic location within the U.S. and several variables including age, poverty distribution, and political association. These results show that the reported pattern of cases in the U.S. is observed through aggregation of the COVID-19 cases, suggesting that local trends may be more informative. The timing of the outbreak varies by county, and is associated with important demographic, socioeconomic and geographic factors.

Article activity feed

  1. SciScore for 10.1101/2020.11.12.379537: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • No conflict of interest statement was detected. If there are no conflicts, we encourage authors to explicit state so.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.