Allosteric Hotspots in the Main Protease of SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph theoretical methods: Bond-to-bond propensity analysis, which has been previously successful in identifying allosteric sites without a priori knowledge in benchmark data sets, and, Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. We further score the highest ranking sites against random sites in similar distances through statistical bootstrapping and identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.

Article activity feed

  1. SciScore for 10.1101/2020.11.06.369439: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The 22 found structures were further investigated using PyMol v.
    PyMol
    suggested: (PyMOL, RRID:SCR_000305)

    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.