Effectiveness of an Ozone Disinfecting and Sanitizing Cabinet to Decontaminate a Surrogate Virus for SARS-CoV-2 on N-95 Masks

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Medical demands during the COVID-19 pandemic have triggered a grave shortage of medical-grade personal protective equipment (PPE), especially, N95 respirators. N95 respirators are critical for the personal protection of medical providers and others when being exposed to individuals with infections caused by the SARS-CoV-2 coronavirus. To address the shortage of N95 respirators, innovative methods are needed to decontaminate coronaviruses from N95 respirators, allowing them to be safely reused by healthcare workers. For this research, we use a commercial ozone disinfecting cabinet to examine the efficacy of ozone-based disinfection of a conservative surrogate virus for SARS-CoV-2, the MS2 bacteriophage. Treatment of mask materials with enhanced ozone treatment resulted in 2.38-log 10 (>99%) reduction of phage from household dust masks and a range of 1.43-log 10 (96.2%) to 4-log 10 (99.99%) reductions of phage from common N95 mask materials.

Article activity feed

  1. SciScore for 10.1101/2020.11.04.20226233: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.