Structure of nonstructural protein 1 from SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The periodic emergence of novel coronaviruses (CoVs) represents an ongoing public health concern with significant health and financial burden worldwide. The most recent occurrence originated in the city of Wuhan, China where a novel coronavirus (SARS-CoV-2) emerged causing severe respiratory illness and pneumonia. The continual emergence of novel coronaviruses underscores the importance of developing effective vaccines as well as novel therapeutic options that target either viral functions or host factors recruited to support coronavirus replication. The CoV nonstructural protein 1 (nsp1) has been shown to promote cellular mRNA degradation, block host cell translation, and inhibit the innate immune response to virus infection. Interestingly, deletion of the nsp1-coding region in infectious clones prevented the virus from productively infecting cultured cells. Because of nsp1’s importance in the CoV lifecycle, it has been highlighted as a viable target for both antiviral therapy and vaccine development. However, the fundamental molecular and structural mechanisms that underlie nsp1 function remain poorly understood, despite its critical role in the viral lifecycle. Here we report the high-resolution crystal structure of the amino, globular portion of SARS-CoV-2 nsp1 (residues 10 – 127) at 1.77Å resolution. A comparison of our structure with the SARS-CoV-1 nsp1 structure reveals how mutations alter the conformation of flexible loops, inducing the formation of novel secondary structural elements and new surface features. Paired with the recently published structure of the carboxyl end of nsp1 (residues 148 – 180), our results provide the groundwork for future studies focusing on SARS-CoV-2 nsp1 structure and function during the viral lifecycle.

IMPORTANCE

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. One protein known to play a critical role in the coronavirus lifecycle is nonstructural protein1 (nsp1). As such, it has been highlighted in numerous studies as a target for both the development of antivirals and for the design of live-attenuated vaccines. Here we report the high-resolution crystal structure of nsp1 derived from SARS-CoV-2 at 1.77Å resolution. This structure will facilitate future studies focusing on understanding the relationship between structure and function for nsp1. In turn, understanding these structure-function relationships will allow nsp1 to be fully exploited as a target for both antiviral development and vaccine design.

Article activity feed

  1. SciScore for 10.1101/2020.11.03.366757: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    All ribbon and surface illustrations of protein structures were prepared with PyMOL (Delano Scientific).
    PyMOL
    suggested: (PyMOL, RRID:SCR_000305)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.