A Time-dependent mathematical model for COVID-19 transmission dynamics and analysis of critical and hospitalized cases with bed requirements
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
A time-dependent SEAIHCRD model is the extension of the SEIR model, which includes some new compartment that is asymptomatic infectious people, hospitalized people, critical people, and dead compartments. In this article, we analyzed six countries, namely the United States, Brazil, India, South Africa, Russia, and Mexico. A time-dependent SEAIHCRD model calculates the magnitude of peaks for exposed people, asymptomatic infectious people, symptomatic infectious people, hospitalized people, the number of people admitted to ICUs, and the number of COVID-19 deaths over time. It also computes the spread scenario and endpoints of disease. The proposed model also involves asymptomatic infectious individuals. To estimate the various parameters, we first collect the data and fit that using the Lavenberg-Marquardt model for death cases. Then we calculate infection rate, recovery rate, case fatality rate, and the basic reproduction number over time. We calculate two types of case fatality rates: one is the daily case fatality rate, and the other is the total case fatality rate. The proposed model includes the social distance parameter, various age classes, hospital beds for severe cases, and ICU beds or ventilators for critical cases. This model will be useful to determine various essential parameters such as daily hospitalization rate, daily death rates, including the requirement of normal and ICU beds during peak days of infection.
Article activity feed
-
-
SciScore for 10.1101/2020.10.28.20221721: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Limitations: Modelling is one of the most powerful tools that give intuitive effects when multiple factors act together. No model is perfect. Like any other mathematical model, our proposed model also has some limitations as following Our Ordinary Differential Equations system is very sensitive to initial parameters. Hence, while giving …
SciScore for 10.1101/2020.10.28.20221721: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Limitations: Modelling is one of the most powerful tools that give intuitive effects when multiple factors act together. No model is perfect. Like any other mathematical model, our proposed model also has some limitations as following Our Ordinary Differential Equations system is very sensitive to initial parameters. Hence, while giving the initial parameters, one should be very careful. Small parameter changes can cause a massive difference in results. We put cases in the death compartment that are serious and not found treatment in ICU care. Our method is focused, in particular, on serious cases and deaths. The proposed model considers that the value of R0 cannot be increased; either it decreases or remains constant. We have assumed that the cases that have been recovered will be immunized, meaning that they will not be infected again.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-