Direct visualization of native infectious SARS-CoV-2 and its inactivation forms using high resolution Atomic Force Microscopy

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for COVID19, a new emerging pandemic affecting humans. Here, single viruses were analyze by atomic force microscopy (AFM) operating directly in a level 3 biosafety (BSL3) facility, which appeared as a fast and powerful method to assess infectious virus morphology in its native conformation, or upon inactivation treatments, at the nanoscale level and in 3D. High resolution AFM reveals structurally intact infectious and inactivated SARS-CoV-2 upon low concentration of formaldehyde treatment. This protocol allows the preparation of intact inactivated SARS-CoV-2 particles for safe use of samples out of level 3 laboratory, as revealed by combining AFM and plaque assays, to accelerate researches against the COVID-19 pandemic. Overall, we illustrate how adapted BSL3-atomic force microscopy is a remarkable toolbox for rapid and direct virus identification and characterization.

Article activity feed

  1. SciScore for 10.1101/2020.10.23.351916: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.
    Cell Line Authenticationnot detected.

    Table 2: Resources

    Antibodies
    SentencesResources
    After washing with 5% milk in TBS-T, the membranes were incubated with HRP conjugated anti-mouse antibodies for N and S protein, and with HRP conjugated anti-rabbit antibody for M protein for 2h at room temperature, washed again in TBS-T, incubated with ECL reagent (Amersham cat#RPN2236) and imaged using a Chemidoc Imager (Biorad)
    anti-mouse
    suggested: None
    anti-rabbit
    suggested: None
    Experimental Models: Cell Lines
    SentencesResources
    Virus inactivation were monitored in plaque assay on a monolayer of VeroE6 cells (3,5.105 cells/well), using 200 μl of virus solution.
    VeroE6
    suggested: JCRB Cat# JCRB1819, RRID:CVCL_YQ49)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.