Adaptive COVID-19 Forecasting via Bayesian Optimization
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Accurate forecasts of infections for localized regions are valuable for policy making and medical capacity planning. Existing compartmental and agent-based models [1, 7–11] for epidemiological forecasting employ static parameter choices and cannot be readily contextualized, while adaptive solutions [4, 13] focus primarily on the reproduction number. In the current work, we propose a novel model-agnostic Bayesian optimization approach [3] for learning model parameters from observed data that generalizes to multiple application-specific fidelity criteria. Empirical results demonstrate the efficacy of the proposed approach with SEIR-like compartmental models on COVID-19 case forecasting tasks. A city-level forecasting system based on this approach is being used for COVID-19 response in a few highly impacted Indian cities.
Article activity feed
-
SciScore for 10.1101/2020.10.19.20215293: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.10.19.20215293: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-