How to remove the testing bias in CoV-2 statistics
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Public health measures and private behaviour are based on reported numbers of SARS-CoV-2 infections. Some argue that testing influences the confirmed number of infections.
OBJECTIVES/METHODS
Do time series on reported infections and the number of tests allow one to draw conclusions about actual infection numbers? A SIR model is presented where the true numbers of susceptible, infectious and removed individuals are unobserved. Testing is also modelled.
RESULTS
Official confirmed infection numbers are likely to be biased and cannot be compared over time. The bias occurs because of different reasons for testing (e.g. by symptoms, representative or testing travellers). The paper illustrates the bias and works out the effect of the number of tests on the number of reported cases. The paper also shows that the positive rate (the ratio of positive tests to the total number of tests) is uninformative in the presence of non-representative testing.
CONCLUSIONS
A severity index for epidemics is proposed that is comparable over time. This index is based on Covid-19 cases and can be obtained if the reason for testing is known.
Article activity feed
-
SciScore for 10.1101/2020.10.14.20212431: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
Software and Algorithms Sentences Resources All data and software code (matlab and R) are available upon request and will be made available online. matlabsuggested: (MATLAB, RRID:SCR_001622)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study …SciScore for 10.1101/2020.10.14.20212431: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
Software and Algorithms Sentences Resources All data and software code (matlab and R) are available upon request and will be made available online. matlabsuggested: (MATLAB, RRID:SCR_001622)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-