Nonspecific blood tests as proxies for COVID-19 hospitalization: are there plausible associations after excluding noisy predictors?

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

This study applied causal criteria in directed acyclic graphs for handling covariates in associations for prognosis of severe COVID-19 (Corona virus disease 19) cases. To identify nonspecific blood tests and risk factors as predictors of hospitalization due to COVID-19, one has to exclude noisy predictors by comparing the concordance statistics (AUC) for positive and negative cases of SARS-CoV-2 (acute respiratory syndrome coronavirus 2). Predictors with significant AUC at negative stratum should be either controlled for their confounders or eliminated (when confounders are unavailable). Models were classified according to the difference of AUC between strata. The framework was applied to an open database with 5644 patients from Hospital Israelita Albert Einstein in Brazil with SARS-CoV-2 RT-PCR (Reverse Transcription – Polymerase Chain Reaction) exam. C-reactive Protein (CRP) was a noisy predictor: hospitalization could have happen due to causes other than COVID-19 even when SARS-CoV-2 RT-PCR is positive and CRP is reactive, as most cases are asymptomatic to mild. Candidates of characteristic response from moderate to severe inflammation of COVID-19 were: combinations of eosinophils, monocytes and neutrophils, with age as risk factor; and creatinine, as risk factor, sharpens the odds ratio of the model with monocytes, neutrophils, and age.

Article activity feed

  1. SciScore for 10.1101/2020.10.12.20211557: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The logistic regression models were evaluated with IBM SPSS version 22.0 and the causal map with DAGitty.net version 3.0.
    SPSS
    suggested: (SPSS, RRID:SCR_002865)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Limitations and future directions: The models are candidates only and the results cannot be representative beyond the patient health profiles of this reference hospital in Sao Paulo/Brazil that attends a high social-economic segment [37]. The sample refers to the initial phase of the pandemics in Brazil and the patterns may change with medicine prescriptions and other adaptations of SARS-CoV-2. The reduced quantity of available cases did not allow the dataset split for training and prediction. Further efforts are needed to increase internal and external validity across populations, as the prognostic ability is also a function of the variability of the development of COVID-19 inflammation. As there is no unambiguous way to characterize “moderate to severe COVID-19 inflammation”, the inclusion of an unmeasured variable reduces the predicted conditional independences from the DAG. But still this framework can help in the identification and estimation of risk factors. This cross-sectional data (single point time) cannot inform if creatinine (or eosinophil) is risk factor or effect of COVID-19 inflammation. In future data collection efforts, participants should be followed over time, from diagnosis to hospitalization; ideally from exposure throughout the lifecycle and also with the follow-up of negative cases. Causal studies are intrinsically predictive [10], therefore we need to advance prognosis research within causal frameworks. As most studies will be observational, data colle...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.