Forecasting combination of hierarchical time series: A novel method with an application to COVID-19
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Multiple, hierarchically organized time series are routinely submitted to the forecaster upon request to provide estimates of their future values, regardless the level occupied in the hierarchy. In this paper, a novel method for the prediction of hierarchically structured time series will be presented. The idea is to enhance the quality of the predictions obtained using a technique of the type forecast reconciliation, by applying this procedure to a set of optimally combined predictions, generated by different statistical models. The goodness of the proposed method will be evaluated using the official time series related to the number of people tested positive to the SARS-CoV-2 in each of the Italian regions, between February 24 th 2020 and August 31 th 2020.
Article activity feed
-
SciScore for 10.1101/2020.10.11.20210799: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this …
SciScore for 10.1101/2020.10.11.20210799: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-