Isolation of infected people and their contacts is likely to be effective against many short-term epidemics
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Background
Isolation of infected people and their contacts may be an effective way to control outbreaks of infectious disease, such as influenza and SARS-CoV-2. Models can provide insights into the efficacy of contact tracing, coupled with isolating or quarantining at risk people.
Methods
We developed an agent-based model and simulated 15, 000 short term illnesses, with varying characteristics. For each illness we ran ten simulations on the following scenarios: (1) No tracing or isolation (None), (2) isolation of agents who have tested positive (Isolation), (3) scenario 2 coupled with minimal contact tracing and quarantine of contacts (Minimum), (4) scenario 3 with more effective contact tracing (Moderate), and (5) perfect isolation of agents who test positive and perfect tracing and quarantine of all their contacts (Maximum).
Results
The median total infections of the Isolation, Minimum, Moderate and Maximum scenarios were 80%, 40%, 17% and 4% of the no intervention scenario respectively.
Conclusions
Isolation of infected patients and quarantine of their contacts, even if moderately well implemented, is likely to substantially reduce the number of infections in an outbreak. Randomized controlled trials to confirm these results in the real world and to analyse the cost effectiveness of contact tracing and isolation during coronavirus and influenza outbreaks are warranted.
Article activity feed
-
SciScore for 10.1101/2020.10.07.20207845: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources While this work may suggest that CTI can mitigate the spread of infectious disease, it offers no insight into how it can be implemented effectively. 2.3 Programming: Our model was prototyped in Python and then recoded, and further developed, in C++. Pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers …
SciScore for 10.1101/2020.10.07.20207845: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources While this work may suggest that CTI can mitigate the spread of infectious disease, it offers no insight into how it can be implemented effectively. 2.3 Programming: Our model was prototyped in Python and then recoded, and further developed, in C++. Pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-