Reference ontology and database annotation of the COVID-19 Open Research Dataset (CORD-19)
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The COVID-19 Open Research Dataset (CORD-19) was released in March 2020 to allow the machine learning and wider research community to develop techniques to answer scientific questions on COVID-19. The dataset consists of a large collection of scientific literature, including over 100,000 full text papers. Annotating training data to normalise variability in biological entities can improve the performance of downstream analysis and interpretation. To facilitate and enhance the use of the CORD-19 data in these applications, in late March 2020 we performed a comprehensive annotation process using named entity recognition tool, TERMite, along with a number of large reference ontologies and vocabularies including domains of genes, proteins, drugs and virus strains. The additional annotation has identified and tagged over 45 million entities within the corpus made up of 62,746 unique biomedical entities. The latest updated version of the annotated data, as well as older versions, is made openly available under GPL-2.0 License for the community to use at: https://github.com/SciBiteLabs/CORD19
Article activity feed
-
SciScore for 10.1101/2020.10.04.325266: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtranspar…SciScore for 10.1101/2020.10.04.325266: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-