Epidemiological measures for informing the general public during the SARS-CoV-2-outbreak: simulation study about bias by incomplete case-detection

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

During the SARS-CoV-2 outbreak, several epidemiological measures, such as cumulative case-counts, incidence rates, effective reproduction numbers and doubling times, have been used to inform the general public and to justify interventions such as lockdown.

During the course of the epidemic, it has been very likely that not all infectious people have been identified, which lead to incomplete case-detection. Apart from asymptomatic infections, possible reasons for incomplete case-detection are availability of test kits and changes in test policies during the course of the epidemic. So far, it has not been examined how biased the reported epidemiological measures are in the presence of incomplete case detection.

In this work, we assess the four frequently used measures with respect to incomplete case-detection: 1) cumulative case-count, 2) incidence rate, 3) effective reproduction number and 4) doubling time. We apply an age-structured SIR model to simulate a SARS-CoV-2 outbreak followed by a lockdown in a hypothetical population. Different scenarios about temporal variations in case-detection are applied to the four measures during outbreak and lockdown. The biases resulting from incomplete case-detection on the four measures are compared. It turns out that the most frequently used epidemiological measure, the cumulative case count is most prone to bias in all of our settings. The effective reproduction number is the least biased measure.

With a view to future reporting about this or other epidemics, we recommend to use of the effective reproduction number for informing the general public and policy makers.

Article activity feed

  1. SciScore for 10.1101/2020.09.23.20200089: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.