A low-cost, rapidly scalable, emergency use ventilator for the COVID-19 crisis

This article has been Reviewed by the following groups

Read the full article

Abstract

For the past 50 years, positive pressure ventilation has been a cornerstone of treatment for respiratory failure. Consensus surrounding the epidemiology of respiratory failure has permitted a relatively good fit between the supply of ventilators and the demand. However, the current COVID-19 pandemic has increased demand for mechanical ventilators well beyond supply. Respiratory failure complicates most critically ill patients with COVID-19 and is characterized by highly heterogeneous pulmonary parenchymal involvement, profound hypoxemia and pulmonary vascular injury. The profound increase in the incidence of respiratory failure has exposed critical shortages in the supply of mechanical ventilators, and those with the necessary skills to treat. While most traditional ventilators rely on an internal compressor and mixer to moderate and control the gas mixture delivered to a patient, the current emergency climate has catalyzed alternative designs that might enable greater flexibility in terms of supply chain, manufacturing, storage and maintenance. Design considerations of these “emergency response” ventilators have generally fallen into two categories: those that rely on mechanical compression of a known volume of gas and those powered by an internal compressor to deliver time cycled pressure- or volume-limited gas to the patient. The present work introduces a low-cost, ventilator designed and built in accordance with the Emergence Use guidance provided by the US Food and Drug Administration (FDA) wherein an external gas supply feeds into the ventilator and time limited flow interruption guarantees tidal volume. The goal of this device is to allow a patient to be treated by a single ventilator platform, capable of supporting the various treatment paradigms during a potential COVID-19 related hospitalization. This is a unique aspect of this design as it attempts to become a one-device-one-visit solution to the problem. The device is designed as a single use ventilator that is sufficiently robust to treat a patient being mechanically ventilated. The overall design philosophy and its applicability in this new crisis-laden world view is first described, followed by both bench top and animal testing results used to confirm the precision, capability, safety and reliability of this low cost and novel approach to mechanical ventilation during the COVID-19 pandemic. The ventilator is shown to perform in a range of critical requirements listed in the FDA emergency regulations and can safely and effectively ventilate a porcine subject. As of August 2020, only 13 emergency ventilators have been authorized by the FDA, and this work represents the first to publish animal data using the ventilator. This proof-of-concept provides support for this cost-effective, readily mass-produced ventilator that can be used to support patients when the demand for ventilators outstrips supply in hospital settings worldwide. More details for this project can be found at https://ventilator.stanford.edu/

Article activity feed

  1. SciScore for 10.1101/2020.09.23.20199877: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variableThe animal was a 65kg female pig with normal lungs.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.