The Coronavirus Network Explorer: Mining a large-scale knowledge graph for effects of SARS-CoV-2 on host cell function
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
Building on recent work that identified human host proteins that interact with SARS-CoV-2 viral proteins in the context of an affinity-purification mass spectrometry screen, we use a machine learning-based approach to connect the viral proteins to relevant biological functions and diseases in a large-scale knowledge graph derived from the biomedical literature. Our aim is to explore how SARS-CoV-2 could interfere with various host cell functions, and also to identify additional drug targets amongst the host genes that could potentially be modulated against COVID-19. Results are presented in the form of interactive network visualizations, that allow exploration of underlying experimental evidence. A selection of networks is discussed in the context of recent clinical observations.
Article activity feed
-
SciScore for 10.1101/2020.09.14.296327: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank …
SciScore for 10.1101/2020.09.14.296327: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- No funding statement was detected.
- No protocol registration statement was detected.
-
