Pentoxifylline and Covid-19: A Systematic Review

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

At more than 10 months after the first case of COVID-19 was documented, the understanding of the pathogenesis of this viral illness is growing on a daily basis. A massive pro-inflammatory response on infected individuals involving several cytokines seems to play a key role on disease. As a result, therapeutic efforts have focused on anti-inflammatory strategies to ameliorate the disease, in sight of a lack of a truly effective anti-viral agent. Pentoxifylline (PTX) has been proposed by multiple authors as a potential therapeutic ally, targeting a variety of mechanisms as it has been shown to have antiviral, anti-inflammatory and hemodynamic effects. Importantly, anti-inflammatory effects center on down-regulation of cytokines such as interleukins and tumor necrosis factor. In pre-pandemic studies, PTX has demonstrated to change the clinical course of inflammatory diseases such as acute respiratory distress syndrome, which is a hallmark of severe COVID-19. Researchers agree it is pertinent to experimentally evaluate the effect this drug has on COVID-19 patients. The objective of this review is to summarize all the proposed mechanisms by which PTX may aid in the treatment of COVID-19, as well as prevent its deadly complications. Our interpretation of the literature is that the benefits PTX may bring to a patient with COVID-19 outweigh the risks this drug might pose on them. As a result, there is consensus regarding the evaluation of PTX in further experimental studies to better characterize its effects on COVID-19 patients.

Article activity feed

  1. SciScore for 10.1101/2020.09.14.20194381: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    We queried Pubmed and Google scholar search engines utilizing the following commands:
    Pubmed
    suggested: (PubMed, RRID:SCR_004846)
    Google scholar
    suggested: (Google Scholar, RRID:SCR_008878)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Limitations in our study include that no statistical analysis could be made, as no tangible evidence has been published to date.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.