Adapting Lot Quality Assurance Sampling to accommodate imperfect tests: application to COVID-19 serosurveillance in Haiti

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

Lot Quality Assurance Sampling (LQAS), a tool used for monitoring health indicators in low resource settings resulting in “high” or “low” classifications, assumes that determination of the trait of interest is perfect. This is often not true for diagnostic tests, with imperfect sensitivity and specificity. Here, we develop Lot Quality Assurance Sampling for Imperfect Tests (LQAS-IMP) to address this issue and apply it to a COVID-19 serosurveillance study in Haiti.

Development

As part of the standard LQAS procedure, the user specifies allowable classification errors for the system, which is defined by a sample size and decision rule. We show that when an imperfect diagnostic test is used, the classification errors are larger than specified. We derive a modified procedure, LQAS-IMP, that accounts for the sensitivity and specificity of a diagnostic test to yield correct classification errors.

Application

At Zanmi Lasante health facilities in Haiti, the goal was to assess the prior circulation of COVID-19 among healthcare workers (HCWs) using a limited number of antibody tests. As the COVID-19 antibody tests were known to have imperfect diagnostic accuracy, we used the LQAS-IMP procedure to define valid systems for sampling at eleven hospitals in Haiti.

Conclusions

The LQAS-IMP procedure accounts for imperfect sensitivity and specificity in system design; if the accuracy of a test is known, the use of LQAS-IMP extends LQAS to applications for indicators that are based on laboratory tests, such as COVID-19 antibodies.

Key Messages

  • It is imperative to account for the sensitivity and specificity of the diagnostic test in serosurveillance studies.

  • For prevalence estimation and inference, adjustments for imperfect testing properties are available to researchers. However, no adjustments currently exist for the design of Lot Quality Assurance Sampling systems, resulting in invalid classification systems when used with an imperfect diagnostic test.

  • When sensitivity and specificity of a diagnostic test is known, Lot Quality Assurance Sampling for Imperfect Tests should be used to determine the sample size and decision rule for a system as it will result in valid classification errors.

Article activity feed

  1. SciScore for 10.1101/2020.09.11.20193052: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.