Frequency and accuracy of proactive testing for COVID-19

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

September 5, 2020

The SARS-CoV-2 coronavirus has proven difficult to control not only because of its high transmissibility, but because those who are infected readily spread the virus before symptoms appear, and because some infected individuals, though contagious, never exhibit symptoms. Proactive testing of asymptomatic individuals is therefore a powerful, and probably necessary, tool for preventing widespread infection in many settings. This paper explores the effectiveness of alternative testing regimes, in which the frequency, the accuracy, and the delay between testing and results determine the time path of infection. For a simple model of disease transmission, we present analytic formulas that determine the effect of testing on the expected number of days of during which an infectious individual is exposed to the population at large. This allows us to estimate the frequency of testing that would be required to prevent uncontrolled outbreaks, and to explore the trade-offs between frequency, accuracy, and delay in achieving this objective. We conclude by discussing applications to outbreak control on college and university campuses.

Competing Interest Statement

Ted Bergstrom and Haoran Li have no competing interests. Carl Bergstrom consults for Color Genomics on COVID testing schedules.

Article activity feed

  1. SciScore for 10.1101/2020.09.05.20188839: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.