Predicting and interpreting COVID-19 transmission rates from the ensemble of government policies

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Several questions resonate as the governments relax their COVID-19 mitigation policies - is it too early to relax them, were the policies as effective as they could have been. Answering these questions about the past or crafting newer policy decisions in the future requires a quantification of how policy choices affect the spread of the infection. Policy landscape as well as the infection trajectories from different states and countries diverged so fast that comparing and learning from them has not been easy. In this work, we standardize and pool together the ensemble of lockdown and graded re-opening policies adopted by the 50 states of USA in any given week between 9th March and 9th August. Using artificial intelligence (AI) on this pooled data, we build a predictive model ( , ) for the weekly-averaged transmission rate of infections. Predictability conceptually raises the possibility of an evidence-based or data-driven mitigation policy-making by evaluating the relative merits of the different policy scenarios. Probing the predictions with interpretable AI highlights how factors such as the closing of bars or the use of masks influence transmission, effects which have been hard to decouple from the ensemble of policy instrument combinations. While acknowledging the limitations of our predictions as well as of the infection testing, we ask the theoretical question if the observed transmission rates in the states were as efficient as they could have been under various levels of restrictions, and if the mitigation policies of the states are ‘overdesigned’. The model can be further refined with a more detailed inclusion of geographies and policy compliances, as well as expanded as newer policies emerge.

Article activity feed

  1. SciScore for 10.1101/2020.08.27.20179853: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The Python implementation of SHAP (https://github.com/slundberg/shap) was used for our interpretable AI analyses as well as for generating figures.
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.