Allocation of COVID-19 Vaccines Under Limited Supply

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

This paper considers how to allocate COVID-19 vaccines to different age groups when limited vaccines are available over time.

Academic/practical relevance

Vaccine is one of the most effective interventions to contain the ongoing COVID-19 pandemic. However, the initial supply of the COVID-19 vaccine will be limited. An urgent problem for the government is to determine who to get the first dose of the future COVID-19 vaccine.

Methodology

We use epidemic data from New York City to calibrate an age-structured SAPHIRE model that captures the disease dynamics within and across various age groups. The model and data allow us to derive effective static and dynamic vaccine allocation policies minimizing the number of confirmed cases or the numbers of deaths.

Results

The optimal static policies achieve a much smaller number of confirmed cases and deaths compared to other static benchmark policies including the pro rata policy. Dynamic allocation policies, including various versions of the myopic policy, significantly improve on static policies.

Managerial implications

For static policies, our numerical study shows that prioritizing the older groups is beneficial to reduce deaths while prioritizing younger groups is beneficial to avert infections. For dynamic policies, the older groups should be vaccinated at early days and then switch to younger groups. Our analysis provides insights on how to allocate vaccines to the various age groups, which is tightly connected to the decision-maker’s objective.

Article activity feed

  1. SciScore for 10.1101/2020.08.23.20179820: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.