Effects of (Un)lockdown on COVID-19 transmission: A mathematical study of different phases in India
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The novel coronavirus (SARS-CoV-2), identified in China at the end of the December 2019 is causing a potentially fatal respiratory syndrome (COVID-19), has meanwhile led to outbreak all over the globe. India has now become the third worst hit country globally with 16,38,870 confirmed cases and 35,747 confirmed deaths due to COVID-19 as of 31 July 2020. In this paper we have used mathematical modelling approach to study the effects of lockdowns and un-lockdowns on the pandemic evolution in India. This, study is based on SIDHARTHE model, which is an extension of classical SIR (Susceptible-Infected-Recovered) model. The SIDHARTHE model distinguish between the diagnosed and undiagnosed cases, which is very important because undiagnosed individuals are more likely to spread the virus than diagnosed individuals. We have stratified the lockdowns and un-lockdowns into seven phases and have computed the basic reproduction number R 0 for each phase. We have calibrated our model results with real data from 20 March 2020 to 31 July 2020. Our results demonstrate that different strategies implemented by GoI, have delayed the peak of pandemic by approximately 100 days. But due to underdiagnosis of the infected asymptomatic subpopulation, a sudden outbreak of cases can be observed in India.
Article activity feed
-
SciScore for 10.1101/2020.08.19.20177840: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2020.08.19.20177840: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-