Spike protein mutational landscape in India: Could Muller’s ratchet be a future game-changer for COVID-19?

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The dire need of effective preventive measures and treatment approaches against SARS-CoV-2 virus, causing COVID-19 pandemic, calls for an in-depth understanding of its evolutionary dynamics with attention to specific geographic locations, since lockdown and social distancing to prevent the virus spread could lead to distinct localized dynamics of virus evolution within and between countries owing to different environmental and host-specific selection pressures. To decipher any correlation between SARS-CoV-2 evolution and its epidemiology in India, we studied the mutational diversity of spike glycoprotein, the key player for the attachment, fusion and entry of virus to the host cell. For this, we analyzed the sequences of 630 Indian isolates as available in GISAID database till June 07, 2020, and detected the spike protein variants to emerge from two major ancestors – Wuhan-Hu-1/2019 and its D614G variant. Average stability of the docked spike protein – host receptor (S-R) complexes for these variants correlated strongly (R 2 =0.96) with the fatality rates across Indian states. However, while more than half of the variants were found unique to India, 67% of all variants showed lower stability of S-R complex than the respective ancestral variants, indicating a possible fitness loss in recently emerged variants, despite a continuous increase in mutation rate. These results conform to the sharply declining fatality rate countrywide (>7-fold during April 11 – June 28, 2020). Altogether, while we propose the potential of S-R complex stability to track disease severity, we urge an immediate need to explore if SARS-CoV-2 is approaching mutational meltdown in India.

Author summary

Epidemiological features are intricately linked to evolutionary diversity of rapidly evolving pathogens, and SARS-CoV-2 is no exception. Our work suggests the potential of average stability of complexes formed by the circulating spike mutational variants and the human host receptor to track the severity of SARS-CoV-2 infection in a given region. In India, the stability of these complexes for recent variants tend to decrease relative to their ancestral ones, following countrywide declining fatality rate, in contrast to an increasing mutation rate. We hypothesize such a scenario as nascent footprints of Muller’s ratchet, proposing large-scale population genomics study for its validation, since this understanding could lead to therapeutic approaches for facilitating mutational meltdown of SARS-CoV-2, as experienced earlier for influenza A virus.

Article activity feed

  1. SciScore for 10.1101/2020.08.18.255570: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Analysis of sequence diversity and reconstruction of phylogeny: The average pairwise nucleotide diversity (π) and the rates of synonymous (dS) and nonsynonymous (dN) mutations for the spike protein-coding genes were calculated using MEGA version X [23].
    MEGA
    suggested: (Mega BLAST, RRID:SCR_011920)
    These 3577 spike protein sequences were aligned using ClustalW program [27, 28].
    ClustalW
    suggested: (ClustalW, RRID:SCR_017277)

    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.