In Silico Design of siRNAs Targeting Existing and Future Respiratory Viruses with VirusSi
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The COVID-19 pandemic has exposed global inadequacies in therapeutic options against both the COVID-19-causing SARS-CoV-2 virus and other newly emerged respiratory viruses. In this study, we present the VirusSi computational pipeline, which facilitates the rational design of siRNAs to target existing and future respiratory viruses. Mode A of VirusSi designs siRNAs against an existing virus, incorporating considerations on siRNA properties, off-target effects, viral RNA structure and viral mutations. It designs multiple siRNAs out of which the top candidate targets >99% of SARS-CoV-2 strains, and the combination of the top four siRNAs is predicted to target all SARS-CoV-2 strains. Additionally, we develop Greedy Algorithm with Redundancy (GAR) and Similarity-weighted Greedy Algorithm with Redundancy (SGAR) to support the Mode B of VirusSi, which pre-designs siRNAs against future emerging viruses based on existing viral sequences. Time-simulations using known coronavirus genomes as early as 10 years prior to the COVID-19 outbreak show that at least three SARS-CoV-2-targeting siRNAs are among the top 30 pre-designed siRNAs. Before-the-outbreak pre-design is also possible against the MERS-CoV virus and the 2009-H1N1 swine flu virus. Our data support the feasibility of pre-designing anti-viral siRNA therapeutics prior to viral outbreaks. We propose the development of a collection of pre-designed, safety-tested, and off-the-shelf siRNAs that could accelerate responses toward future viral diseases.
Article activity feed
-
SciScore for 10.1101/2020.08.13.250076: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
Software and Algorithms Sentences Resources Availability of the computational pipeline: The VirusSi pipeline is available as a command-line software, which has been deposited in the GitHub (https://github.com/dingyaozhang/VirusSi). VirusSisuggested: NoneResults from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No …
SciScore for 10.1101/2020.08.13.250076: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
Software and Algorithms Sentences Resources Availability of the computational pipeline: The VirusSi pipeline is available as a command-line software, which has been deposited in the GitHub (https://github.com/dingyaozhang/VirusSi). VirusSisuggested: NoneResults from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
