Precise Prediction of COVID-19 in Chest X-Ray Images Using KE Sieve Algorithm
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The novel coronavirus (COVID-19) pandemic is pressurizing the healthcare systems across the globe and few of them are on the verge of failing. The detection of this virus as early as possible will help in contaminating the spread of it as the virus is mutating itself as fast as possible and currently there are about 4,300 strains of the virus according to the reports. Clinical studies have shown that most of the COVID-19 patients suffer from a lung infection similar to influenza. So, it is possible to diagnose lung infection using imaging techniques. Although a chest computed tomography (CT) scan has been shown to be an effective imaging technique for lung-related disease diagnosis, chest X-ray is more widely available across the hospitals due to its considerably lower cost and faster imaging time than CT scan. The advancements in the area of machine learning and pattern recognition has resulted in intelligent systems that analyze CT Scans or X-ray images and classify between pneumonia and normal patients. This paper proposes KE Sieve Neural Network architecture, which helps in the rapid diagnosis of COVID-19 using chest X-ray images. This architecture is achieving an accuracy of 98.49%. This noninvasive prediction method can assist the doctors in this pandemic and reduce the stress on health care systems.
Article activity feed
-
SciScore for 10.1101/2020.08.13.20174144: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransp…SciScore for 10.1101/2020.08.13.20174144: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-