Fine-tuned Forecasting Techniques for COVID-19 Prediction in India

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Estimation of statistical quantities plays a cardinal role in handling of convoluted situations such as COVID-19 pandemic and forecasting the number of affected people and fatalities is a major component for such estimations. Past researches have shown that simplistic numerical models fare much better than the complex stochastic and regression-based models when predicting for countries such as India, United States and Brazil where there is no indication of a peak anytime soon. In this research work, we present two models which give most accurate results when compared with other forecasting techniques. We performed both short-term and long-term forecasting based on these models and present the results for two discrete durations.

Article activity feed

  1. SciScore for 10.1101/2020.08.10.20167247: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    We used the polyfit() function of the numpy module placed in Python and got the coefficients’ values as:

    rendering our equations to be: The covariance matrices obtained for each case are shown in Fig. 3. 3.2 Least square fitting method: A methodology widely used to perform regression analysis is the least square regression method.

    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.