Estimating the Changing Infection Rate of COVID-19 Using Bayesian Models of Mobility
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
In order to prepare for and control the continued spread of the COVID-19 pandemic while minimizing its economic impact, the world needs to be able to estimate and predict COVID-19’s spread. Unfortunately, we cannot directly observe the prevalence or growth rate of COVID-19; these must be inferred using some kind of model. We propose a hierarchical Bayesian extension to the classic susceptible-exposed-infected-removed (SEIR) compartmental model that adds compartments to account for isolation and death and allows the infection rate to vary as a function of both mobility data collected from mobile phones and a latent time-varying factor that accounts for changes in behavior not captured by mobility data. Since confirmed-case data is unreliable, we infer the model’s parameters conditioned on deaths data. We replace the exponential-waiting-time assumption of classic compartmental models with Erlang distributions, which allows for a more realistic model of the long lag between exposure and death. The mobility data gives us a leading indicator that can quickly detect changes in the pandemic’s local growth rate and forecast changes in death rates weeks ahead of time. This is an analysis of observational data, so any causal interpretations of the model’s inferences should be treated as suggestive at best; nonetheless, the model’s inferred relationship between different kinds of trips and the infection rate do suggest some possible hypotheses about what kinds of activities might contribute most to COVID-19’s spread.
Article activity feed
-
SciScore for 10.1101/2020.08.06.20169664: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:We find that mobility is a promising signal for nowcasting and forecasting the spread of COVID-19, but it is important to understand its limitations. Notably, our experiments suggest that mobility signals alone cannot explain …
SciScore for 10.1101/2020.08.06.20169664: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:We find that mobility is a promising signal for nowcasting and forecasting the spread of COVID-19, but it is important to understand its limitations. Notably, our experiments suggest that mobility signals alone cannot explain all variation in infection rates; for example, increases in mobility in May do not appear to have caused massive increases in infections. However, we can alleviate these limitations by assuming the existence of and marginalizing other latent factors.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
