Predicting the Emergence of SARS-CoV-2 Clades
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Evolution is a process of change where mutations in the viral RNA are selected based on their fitness for replication and survival. Given that current phylogenetic analysis of SARS-CoV-2 identifies new viral clades after they exhibit evolutionary selections, one wonders whether we can identify the viral selection and predict the emergence of new viral clades? Inspired by the Kolmogorov complexity concept, we propose a generative complexity (algorithmic) framework capable to analyze the viral RNA sequences by mapping the multiscale nucleotide dependencies onto a state machine, where states represent subsequences of nucleotides and state-transition probabilities encode the higher order interactions between these states. We apply computational learning and classification techniques to identify the active state-transitions and use those as features in clade classifiers to decipher the transient mutations (still evolving within a clade) and stable mutations (typical to a clade). As opposed to current analysis tools that rely on the edit distance between sequences and require sequence alignment, our method is computationally local, does not require sequence alignment and is robust to random errors (substitution, insertions and deletions). Relying on the GISAID viral sequence database, we demonstrate that our method can predict clade emergence, potentially aiding with the design of medications and vaccines.
Article activity feed
-
SciScore for 10.1101/2020.07.26.222117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources In the first stage, we perform feature extraction by building a learning model using XGBoost18, 19 (XGBoost package in python is used in the implementation) method with maximum depth = 1. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues …
SciScore for 10.1101/2020.07.26.222117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources In the first stage, we perform feature extraction by building a learning model using XGBoost18, 19 (XGBoost package in python is used in the implementation) method with maximum depth = 1. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- No funding statement was detected.
- No protocol registration statement was detected.
-
SciScore for 10.1101/2020.07.26.222117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources In the first stage, we perform feature extraction by building a learning model using XGBoost18, 19 (XGBoost package in python is used in the implementation) method with maximum depth = 1. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study …
SciScore for 10.1101/2020.07.26.222117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources In the first stage, we perform feature extraction by building a learning model using XGBoost18, 19 (XGBoost package in python is used in the implementation) method with maximum depth = 1. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).
Results from JetFighter: We did not find any issues relating to colormaps.
About SciScore
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, including references cited, please follow this link.
-
SciScore for 10.1101/2020.07.26.222117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources In the first stage, we perform feature extraction by building a learning model using XGBoost18, 19 (XGBoost package in python is used in the implementation) method with maximum depth = 1. pythonsuggested: (IPython, SCR_001658)Data from additional tools added to each annotation on a weekly basis.
About SciScore
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not …
SciScore for 10.1101/2020.07.26.222117: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources In the first stage, we perform feature extraction by building a learning model using XGBoost18, 19 (XGBoost package in python is used in the implementation) method with maximum depth = 1. pythonsuggested: (IPython, SCR_001658)Data from additional tools added to each annotation on a weekly basis.
About SciScore
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, including references cited, please follow this link.
-