A HYBRID KNOWLEDGE-BASED AND MODIFIED REGRESSION ANALYSIS APPROACH FOR COVID-19 TRACKING IN USA
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Since its appearance in 2019, the covid-19 virus deluged the world with unprecedented data in short time. Despite the countless worldwide pertinent studies and advanced technologies, the spread is neither contained nor defeated. In fact, there is a record surge in the number of confirmed new cases since July 2020. This article presents a new predictive Knowledge-based (KB) toolkit named CORVITT (Corona Virus Tracking Toolkit) and modified linear regression model. This hybrid approach uses the confirmed new cases and demographic data, implemented. CORVITT is not an epidemiological model, in the sense that it does not model disease transmission, nor does it use underlying epidemiological parameters like the reproductive rate. It forecasts the spread in order to assist the official to make proactive intervention.
Article activity feed
-
SciScore for 10.1101/2020.07.26.20162347: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Summary: As the enormity of the covid-19 threat has become clear, the characteristics of existing covid-19 complex analytic methodologies and the all-encompassing approach place serious limitations on their usefulness for …
SciScore for 10.1101/2020.07.26.20162347: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Summary: As the enormity of the covid-19 threat has become clear, the characteristics of existing covid-19 complex analytic methodologies and the all-encompassing approach place serious limitations on their usefulness for practical use. The computer technologies have reached what no one could imagined, and the KB systems have proven very beneficial in many fields. The logic question is what hasn’t the KB been applied for covid-19 in harness the analytical complexity and easy to apply simulations? This article brought machine smartness to assist humans’ intelligence to capture the big picture of the virus illusiveness thus take proactive steps to mitigate safely its inevitable adverse effects. This article introduced a hybrid KB-regression analysis model for covid-19 forecasting. It used data collected from eleven US states at macro-level level to foresee the short-term spread trajectory. The outputs unveiled new discoveries and shed light on various facets of the covid-19 in each state. The accuracy of the hybrid approach was gauged by comparing forecasted and actual data and satisfactory agreements were found. It should be noted that this study is a step forward, but additional development is in progress for improvement. Ethics approval and consent to participate: Not applicable. Consent for publication: The author read and approves of the final version of the paper. Availability of supporting data: The data used in this study was obtained from the New York Times, https://ww...
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
SciScore for 10.1101/2020.07.26.20162347: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating …
SciScore for 10.1101/2020.07.26.20162347: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
About SciScore
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, including references cited, please follow this link.
-
SciScore for 10.1101/2020.07.26.20162347: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating …
SciScore for 10.1101/2020.07.26.20162347: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
About SciScore
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, including references cited, please follow this link.
-