Baseline cardiometabolic profiles and SARS-CoV-2 infection in the UK Biobank

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

SARS-CoV-2 is a rapidly spreading coronavirus responsible for the Covid-19 pandemic, which is characterized by severe respiratory infection. Many factors have been identified as risk factors for SARS-CoV-2, with much early attention being paid to body mass index (BMI), which is a well-known cardiometabolic risk factor.

Objective

This study seeks to examine the impact of additional baseline cardiometabolic risk factors including high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), Apolipoprotein A-I (ApoA-I), Apolipoprotein B (ApoB), triglycerides, hemoglobin A1c (HbA1c) and diabetes on the odds of testing positive for SARS-CoV-2 in UK Biobank (UKB) study participants.

Methods

We examined the effect of BMI, lipid profiles, diabetes and alcohol intake on the odds of testing positive for SARS-Cov-2 among 9,005 UKB participants tested for SARS-CoV-2 from March 16 through July 14, 2020. Odds ratios and 95% confidence intervals were computed using logistic regression adjusted for age, sex and ancestry.

Results

Higher BMI, Type II diabetes and HbA1c were associated with increased SARS-CoV-2 odds (p < 0.05) while HDL-C and ApoA-I were associated with decreased odds (p < 0.001). Though the effect of BMI, Type II diabetes and HbA1c were eliminated when HDL-C was controlled, the effect of HDL-C remained significant when BMI was controlled for. LDL-C, ApoB and triglyceride levels were not found to be significantly associated with increased odds.

Conclusion

Elevated HDL-C and ApoA-I levels were associated with reduced odds of testing positive for SARS-CoV-2, while higher BMI, type II diabetes and HbA1c were associated with increased odds. The effects of BMI, type II diabetes and HbA1c levels were no longer significant after controlling for HDL-C, suggesting that these effects may be mediated in part through regulation of HDL-C levels. In summary, our study suggests that baseline HDL-C level may be useful for stratifying SARS-CoV-2 infection risk and corroborates the emerging picture that HDL-C may confer protection against sepsis in general and SARS-CoV-2 in particular.

Article activity feed

  1. SciScore for 10.1101/2020.07.25.20161091: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power AnalysisWe also grouped the ICD10 code data into Phecodes in order to increase statistical power (15).
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Although the findings of this study persist when appropriate controls are applied, we acknowledge the inherent limitations of this association study, which is subject to sampling bias. Importantly, we do not know the context in which the SARS-CoV-2 testing was carried out, the HDL status at the time of testing, and the disease severity of each case. Participants tested in this study were primarily those who presented to a clinical care site with symptoms suggestive of SARS-CoV-2. Although this has the potential to marginally increase SARS-CoV-2 positive testing rate, it is unlikely to influence the association of HDL, BMI and alcohol consumption with SARS-CoV-2 positivity rate. Additionally, while majority of those tested were inpatient at the time of sampling, we acknowledge the potential confounding effects of subsequent expansion of testing into the community and to asymptomatic patients; however, we believe that such effects would tend to diminish any association with SARS-CoV-2 test positive rates. Another limitation of an association study based on UK Biobank is that the baseline cardiometabolic data was collected several years prior to the SARS-CoV-2 pandemic. However, we do not believe that this did not have a substantial impact on our findings. While mean BMI has been reported to have increased around the world from 1976 to 2016, this increase has plateaued in recent years in high-income English-speaking countries, including the UK (22). Additionally, mean triglyceri...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

  2. SciScore for 10.1101/2020.07.25.20161091: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.RandomizationRelated subjects were removed in an iterative fashion by randomly removing one subject at a time from pairs of subjects listed as related in the dataset provided by the UK Biobank.Blindingnot detected.Power Analysisnot detected.Sex as a biological variablenot detected.

    Table 2: Resources

    Data from additional tools added to each annotation on a weekly basis.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, including references cited, please follow this link.