Mathematical model study of a pandemic: Graded lockdown approach
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
A kinetic approach is developed, in a “tutorial style” to describe the evolution of an epidemic with spread taking place through contact. The “infection - rate” is calculated from the rate at which an infected person approaches an uninfected susceptible individual, i.e. a potential recipient of the disease, up to a distance p , where the value of p may lie between p min ≤ p ≤ p max . We consider a situation with a total population of N individuals, living in an area A, x(t) amongst them being infected while x d (t) = β′x(t) is the number that have died in the course of transmission and evolution of the epidemic. The evolution is developed under the conditions (1) a faction α (t) of the [N-x(t) – x d (t)] uninfected individuals and (2) a β(t) fraction of the x(t) infected population are quarantined, while the “source events” that spread the infection are considered to occur with frequency υ 0 . The processes of contact and transmission are considered to be Markovian. Transmission is assumed to be inhibited by several processes like the use of “masks”, “hand washing or use of sanitizers” while “physical distancing” is described by p . The evolution equation for x ( t ) is a Riccati - type differential equation whose coefficients are time-dependent quantities, being determined by an interplay between the above parameters. A formal solution for x(t) is presented, for a “graded lockdown” with the parameters, 0≤ α(t), β(t)≤1 reaching their respective saturation values in time scales, τ 1 , τ 2 respectively, from their initial values α(0)=β(0)=0 . The growth is predicted for several BBMP wards in Bengaluru and in urban centers in Chikkaballapur district, as an illustrative case. Above selections serve as model cases for high, moderate and thin population densities. It is seen that the evolution of [x(t)/N] with time depends upon (a) the initial time scale of evolution, (b) the time scale of cure and (c) on the time dependence of the Lockdown function Q(t) = {[1-α(t)]·[1-β(t)]} . The formulae are amenable to simple computations and show that in order to curb the spread one must ensure that Q(∞) must be below a critical value and the vigilance has to be continued for a long time (at least 100 to 150 days) after the decay starts, to avoid all chances of the infection reappearing.
Article activity feed
-
SciScore for 10.1101/2020.07.22.20159962: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.07.22.20159962: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-