Map of SARS-CoV-2 spike epitopes not shielded by glycans

This article has been Reviewed by the following groups

Read the full article

Abstract

The severity of the COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, calls for the urgent development of a vaccine. The primary immunological target is the SARS-CoV-2 spike (S) protein. S is exposed on the viral surface to mediate viral entry into the host cell. To identify possible antibody binding sites not shielded by glycans, we performed multi-microsecond molecular dynamics simulations of a 4.1 million atom system containing a patch of viral membrane with four full-length, fully glycosylated and palmitoylated S proteins. By mapping steric accessibility, structural rigidity, sequence conservation and generic antibody binding signatures, we recover known epitopes on S and reveal promising epitope candidates for vaccine development. We find that the extensive and inherently flexible glycan coat shields a surface area larger than expected from static structures, highlighting the importance of structural dynamics in epitope mapping.

Article activity feed

  1. SciScore for 10.1101/2020.07.03.186825: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    We performed MD simulations of the four S proteins for 1.93 μs in the NpT ensemble with GROMACS 2019.6 [25].
    GROMACS
    suggested: (GROMACS, RRID:SCR_014565)
    Sequence-based epitope predictions: We estimated the epitope probability prediction by using the BepiPred 2.0 webserver (http://www.cbs.dtu.dk/services/BepiPred/), with an Epitope Threshold of 0.5 [32]
    BepiPred
    suggested: (BepiPred-2.0, RRID:SCR_018499)
    We added missing loops using MODELLER [2].
    MODELLER
    suggested: (MODELLER, RRID:SCR_008395)
    Assembly of full-length S model: A full-length model of S was built by manually matching the separate structural domains using PyMOL [10], and then building missing connecting residues as unstructured linkers with MODELLER [2].
    PyMOL
    suggested: (PyMOL, RRID:SCR_000305)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.