Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with COVID-19: a retrospective cohort study in Hong Kong

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

The coronavirus disease 2019 (COVID-19) has become a pandemic, placing significant burdens on the healthcare systems. In this study, we tested the hypothesis that a machine learning approach incorporating hidden nonlinear interactions can improve prediction for Intensive care unit (ICU) admission.

Methods

Consecutive patients admitted to public hospitals between 1 st January and 24 th May 2020 in Hong Kong with COVID-19 diagnosed by RT-PCR were included. The primary endpoint was ICU admission.

Results

This study included 1043 patients (median age 35 (IQR: 32-37; 54% male). Nineteen patients were admitted to ICU (median hospital length of stay (LOS): 30 days, median ICU LOS: 16 days). ICU patients were more likely to be prescribed angiotensin converting enzyme inhibitors/angiotensin receptor blockers, anti-retroviral drugs lopinavir/ritonavir and remdesivir, ribavirin, steroids, interferon-beta and hydroxychloroquine. Significant predictors of ICU admission were older age, male sex, prior coronary artery disease, respiratory diseases, diabetes, hypertension and chronic kidney disease, and activated partial thromboplastin time, red cell count, white cell count, albumin and serum sodium. A tree-based machine learning model identified most informative characteristics and hidden interactions that can predict ICU admission. These were: low red cells with 1) male, 2) older age, 3) low albumin, 4) low sodium or 5) prolonged APTT. A five-fold cross validation confirms superior performance of this model over baseline models including XGBoost, LightGBM, random forests, and multivariate logistic regression.

Conclusions

A machine learning model including baseline risk factors and their hidden interactions can accurately predict ICU admission in COVID-19.

Article activity feed

  1. SciScore for 10.1101/2020.06.30.20143651: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Statistical analyses (including univariate logistic regression) were performed using RStudio software (Version: 1.1.456) and Python (Version: 3.6).
    RStudio
    suggested: (RStudio, RRID:SCR_000432)
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.