A Modelling Study for Designing a Multi-layered Surveillance Approach to Detect the Potential Resurgence of SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Background

Countries achieving control of COVID-19 after an initial outbreak will continue to face the risk of SARS-CoV-2 resurgence. This study explores surveillance strategies for COVID-19 containment based on polymerase chain reaction tests.

Methods

Using a dynamic SEIR-type model to simulate the initial dynamics of a COVID-19 introduction, we investigate COVID-19 surveillance strategies among healthcare workers, hospital patients, and community members. We estimate surveillance sensitivity as the probability of COVID-19 detection using a hypergeometric sampling process. We identify test allocation strategies that maximise the probability of COVID-19 detection across different testing capacities. We use Beijing, China as a case study.

Findings

Surveillance subgroups are more sensitive in detecting COVID-19 transmission when they are defined by more COVID-19 specific symptoms. In this study, fever clinics have the highest surveillance sensitivity, followed by respiratory departments. With a daily testing rate of 0.07/1000 residents, via exclusively testing at fever clinic and respiratory departments, there would have been 598 [95% eCI: 35, 2154] and 1373 [95% eCI: 47, 5230] cases in the population by the time of first case detection, respectively. Outbreak detection can occur earlier by including non-syndromic subgroups, such as younger adults in the community, as more testing capacity becomes available.

Interpretation

A multi-layer approach that considers both the surveillance sensitivity and administrative constraints can help identify the optimal allocation of testing resources and thus inform COVID-19 surveillance strategies.

Funding

Bill & Melinda Gates Foundation, National Institute of Health Research (UK), National Institute of Health (US), the Royal Society, and Wellcome Trust.

Article activity feed

  1. SciScore for 10.1101/2020.06.27.20141440: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.