Adhesive Contact Between Cylindrical (Ebola) and Spherical (SARS-CoV-2) Viral Particles and a Cell Membrane
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
A critical event during the process of cell infection by a viral particle is attachment, which is driven by adhesive interactions and resisted by bending and tension. The biophysics of this process has been studied extensively but the additional role of externally applied force or displacement has generally been neglected. In this work we study the adhesive force-displacement response of viral particles against a cell membrane. We have built two models: one in which the viral particle is cylindrical (say, representative of filamentous virus such as Ebola) and another in which it is spherical (such as SARS-CoV-2 and Zika). Our interest is in initial adhesion, in which case deformations are small and the mathematical model for the system can be simplified considerably. The parameters that characterize the process combine into two dimensionless groups that represent normalized membrane bending stiffness and tension. In the limit where bending dominates, for sufficiently large values of normalized bending stiffness, there is no adhesion between viral particles and the cell membrane without applied force. (The zero-external-force contact width and pull-off force are both zero.) For large values of normalized membrane tension, the adhesion between virus and cell membrane is weak but stable. (The contact width at zero external force has a small value.) Our results for pull-off force and zero force contact width help to quantify conditions that could aid the development of therapies based on denying the virus entry into the cell by blocking its initial adhesion.
Article activity feed
-
SciScore for 10.1101/2020.06.26.173567: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank …
SciScore for 10.1101/2020.06.26.173567: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
