Simulation of COVID-19 Incubation Period and the Effect of Probability Distribution Function on Model Training Using MIMANSA

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Coronavirus disease 2019 (COVID-19) has infected people all over the world. While scientists are busy finding a vaccine and medicine, it becomes difficult to control the spread and manage patients. Mathematical models help one get a better feel for the challenges in patient management. With this in mind, our team developed a model called Multilevel Integrated Model with a Novel Systems Approach (MIMANSA) Welling et. al (2020). MIMANSA is a multi-parametric model. One of the challenges in the design of MIMANSA was to simulate the incubation period of coronavirus. The incubation period decides when virus-infected patients would show symptoms. The probability distribution function (PDF), when applied to the number of virus-infected cases, gives a good representation of the process of the incubation period. The probability distribution functions can take various forms. In this paper, we explore a variety of PDFs and their impact on parameter estimation in the MIMANSA model. For our experiments, we used Weibull, Gaussian, uniform, and Gamma distribution. To ensure a fair comparison of Weibull, Gaussian, and Gamma distribution, we matched the peak value of the distribution. Our results show that the Weibull distribution with shape 7.7 and scale 7 for 14 days gives a better training model and predictions.

Article activity feed

  1. SciScore for 10.1101/2020.06.18.20134460: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Weibull and Gamma have shapes 3.5 and 6 while scaling 7 and 0.9 respectively.
    Gamma
    suggested: (GAMMA, RRID:SCR_009484)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.