Time-series analyses of directional sequence changes in SARS-CoV-2 genomes and an efficient search method for advantageous mutations for growth in human cells

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

We first conducted time-series analysis of mono- and dinucleotide composition for over 10,000 SARS-CoV-2 genomes, as well as over 1500 Zaire ebolavirus genomes, and found clear time-series changes in the compositions on a monthly basis, which should reflect viral adaptations for efficient growth in human cells. We next developed a sequence alignment free method that extensively searches for advantageous mutations and rank them in an increase level for their intrapopulation frequency. Time-series analysis of occurrences of oligonucleotides of diverse lengths for SARS-CoV-2 genomes revealed seven distinctive mutations that rapidly expanded their intrapopulation frequency and are thought to be candidates of advantageous mutations for the efficient growth in human cells.

Article activity feed

  1. SciScore for 10.1101/2020.06.16.151282: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The Genome sequences of Zaire ebolavirus were downloaded from the Virus Variation Resource database (https://www.ncbi.nlm.nih.gov/genome/viruses/variation/) (Hatcher et al., 2017) on May 3, 2020.
    https://www.ncbi.nlm.nih.gov/genome/viruses/variation/
    suggested: (Virus Variation, RRID:SCR_013790)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.